ACTEX LTAM Study Manual

Fall 2019 Edition

Errata

Jan 1, 2020

C5-11, Example 5.5 Solution: change as follows:

Under UDD,

$$A^{(4)}_{50:\overline{20}|} = \frac{i}{i^{(4)}} A^{1}_{50:\overline{20}|} = 1.01856(0.38844 - 0.34824) = 0.040946$$

$$A^{(4)}_{50:\overline{20}|} = A^{(4)}_{50:\overline{20}|} + {}_{20}E_{50} = 0.040946 + 0.34824 = 0.389186$$

$$\ddot{a}^{(4)}_{50:\overline{20}|} - \beta(4)(1 - \alpha E_{50}) = 1.00019 \times 8.0550 - 0.38272(1 - 0.60182) = 7.904139$$

 $\ddot{a}_{50:\overline{10}|}^{(4)} = \alpha(4)\ddot{a}_{50:\overline{10}|}^{(4)} - \beta(4)(1 - {}_{10}E_{50}) = 1.00019 \times 8.0550 - 0.38272(1 - 0.60182) = 7.904139$

The annual premium is 5000(0.389186) / 7.904139 = 246.1913.

This means that each quarterly premium is 246.1913 / 4 = 64.548.

C5-44 16: add (vi) $A_{80} = 0.54092$

C5-61 and C5-62 16: change 592.93 to 540.92, and the final answer to 800.85.

C5-70 solution to Ex 34, line 3 and 4:

...and hence
$$k = 58$$
. The percentile premium is $\frac{10000}{\ddot{s}_{59}} = \frac{10000 \times 0.05 / 1.05}{1.05^{59} - 1} = 28.36$.

C7-22 solution: line7: $q_{44} = 0.000710$. The RHS of the above is 9.623667...

line 8: ${}_{9}V = 8.003842$

last line for (a): ${}_{9}V^{\text{mod}} = 8.12$.

C7-63 solution 30(b): Change $A_{x+t:\overline{h-t}|}$ to $A_{x+t:\overline{n-t}|}$

C10-78 #20(b)
$$\frac{d}{dt}_{t} p_{x}^{02} = p_{x}^{00} \mu_{x+t}^{02} + p_{x}^{01} \mu_{x+t}^{12}$$

C12-75 9 Starting from line 3 of the expression at the middle: ... = 8.380037S

last 2 lines:
$$\frac{8.380037S}{13.5498} = 0.618462S$$
... So the ratio is $0.618462 / 1.03^{34} = 22.64\%$

C12-78 12(b) The benefit related to past service is the accrual rate multiplied with the total salary earned from May 1, 2012 to April 30, 2022:

$$2.5\%(40000 + 40000 \times 1.035 + ... + 40000 \times 1.035^{9}) = 0.025 \times 40000 \times \frac{1.035^{10} - 1}{0.035} = 11731.39$$

The benefit related to future services is 66674.013 - 11731.39 = 54942.62.

C15-26, line -5: E[logit(
$$q(x, t+1)$$
)] = ... = $c^{(1)} + K_t^{(1)} + (c^{(2)} + K_t^{(2)})(x - \overline{x})$
line -2: $\sigma_{K_1}^2 + (x - \overline{x})^2 \sigma_{K_2}^2 + 2(x - \overline{x}) \rho \sigma_{K_1} \sigma_{K_2}$

Apply the same change to line 3 and line 6 of the solution on C15-27, and to solutions of #38

and #39 on C15-45.

C15-28, equation box: change the second $K_t^{(2)}$ to $K_t^{(3)}$

Apply the same change to C15-37 #43 and the solution to #43 (last line) on C15-46.

C16-28, #5: Change 4000 to 40,000

C16-39, solution to #4 line 6:
$$\ddot{a}_x^{11} = \sum_{k=0}^{\infty} v_k^k p_x^{11} = p_x^{11} + \sum_{k=1}^{\infty} v_k^k p_x^{11} = 1 + a_x^{11}$$

T1-5 7 Change the first three options as (A) 53% (B) 63% (C) 73%

T1-18 Change the option of 7 from B to C (do the same T1-19 Q7)

T1-20 line 1:
$$\frac{61.436416S}{13.5498-1} = 4.89541S$$
 line 3: So the ratio is $4.89541 / 1.05^{39} = 73.01\%$.